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The field of device-independent quantum cryptography has seen enormous success in the past
several years, including the achievement of universally composable security proofs for device-
independent quantum key distribution (DI-QKD) and randomness expansion. Full security proofs
in the field so far are long and technically deep. In this paper we show that the concept of the
mirror adversary can be used to simplify device-independent proofs. We give a short proof that
any bipartite Bell violation can be used to generate private random numbers. The proof is based
on elementary techniques and is entirely self-contained.

PACS numbers:

Quantum cryptography is based on, among other phys-
ical principles, the concept of intrinsic randomness: cer-
tain quantum measurements are unpredictable, even to
adversary who has complete information about the pro-
tocol and the apparatus used. This intrinsic random-
ness allows a user to generate random keys for herself,
or to distribute random keys across distances with an-
other party and then use these keys for secure informa-
tion transmission. Quantum cryptography offers secu-
rity against a computationally unlimited (and quantum-
enabled) adversary.

Device-independent quantum cryptography is based
on a more specific observation: two or more devices
that exhibit superclassical probability correlations (when
blocked from communicating) must be exhibiting random
behavior. The outputs of such devices cannot be fully
predictable to an adversary, and therefore can be col-
lected and processed by a classical user to obtain truly
random bits, even when the devices themselves are not
trusted. This idea has been used in multiple crypto-
graphic contexts, including randomness expansion and
amplification [1, 3], key distribution [2], and coin-flipping
[4], and has been realized in experiment [5, 6].

Despite the simplicity of the central idea, proofs for
device-independent quantum cryptography are challeng-
ing and took several years to develop. One of the central
challenges is proving universal composability – i.e., prov-
ing security in the presence of quantum side information.
While classical statistical arguments can be used to show
that the outputs of a Bell violation are unpredictable to
a classical adversary (see., e.g., [7, 8]) these proofs do
not carry over to the case of quantum side information
because of the notion of information locking [9].

Proofs of universal composability for device-
independent random number generation have used
tools specific to the quantum context, such as the
reconstruction paradigm based on Trevisan’s extractor
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[10], and inductive proofs based on quantum Renyi
divergence [11–14]. Such proofs are long and mathemat-
ically complex. The most recent paper on the subject
[14] provides an easily adaptable framework for proving
new results on randomness generation, but it is based
on the entropy accumulation theorem [13], the proof of
which is multilayered and technically deep.

The goal of the current paper is provide a compact se-
curity proof for universal composability in the quantum
context. The proof is based on the concept of the mir-
ror adversary – the idea that a quantum adversary who
attempts to guess the random numbers by mirroring the
devices’ measurements is almost as good as an optimal
adversary. This idea was discussed in a previous paper
by the author [15], and is essentially a reframing of the
commonly used idea of pretty good measurements (see
section II). The approach allows us to reduce security
questions to more elementary questions about nonlocal
games (where the advesary is included as a player). I
have combined this idea with known techniques in the
quantum information (mainly [16, 17]) to prove univer-
sal composability through elementary means.

The proof is self-contained, with results from other
sources reproved rather than cited. The only assertions
we take for granted are Azuma’s inequality (see Theo-
rem 7.2.1 in [18]) and Holder’s inequality (see Corollary
IV.2.6 in [19]).

Our main result is the informal theorem stated below
(see Theorem IV.3 for a precise statement, and Figure 1
for the protocol). The result addresses private random
number generation, where the goal is to use untrusted
quantum devices and publically-known bits to produce
secret bits. I am optimistic that the mirror adversary
technique can be applied to other problems as well.

Theorem. (Informal) Suppose that two untrusted de-
vices exhibit a Bell violation of δ > 0 over N rounds.
Then, Ω(Nδ5) private randomness bits can be extracted
from the outputs of the devices in polynomial time, using
O(N) bits of public randomness. The resulting private
bits are secure against quantum side information.
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I. PRELIMINARIES.

Throughout the paper, a register D is a finite-
dimensional Hilbert space, and a state φ of such a reg-
ister is a density operator on V . If D = D1 ⊗ D2, we
will write φD1 for TrD2φ. As a convenience, if X is an
operator on D and Y is an operator on D1, then the ex-
pression XY means X(Y ⊗ ID2) and the expression Y X
means (Y ⊗ ID2

)X.
We give a formalism for nonlocal games and the quan-

tum strategies used in such games. We begin by formal-
izing measurements. An (N -fold) measurement strategy
on a register Q is a family of POVMs on Q of the form{{

F t
u

}
t∈T N

}
u∈UN

, (1)

where T and U are finite sets. Such a strategy is sequen-
tial if for any t1, . . . , ti ∈ T and u ∈ UN , the operator

F t1···tiu :=
∑

ti+1···tn

F t1···titi+1···tn
u (2)

is independent of the values of ut+1 · · ·un. (In such a
case we can simply write F t1···tiu1···ui

for F t1···tiu .) Sequential
measurements model the behavior of a quantum player
who receives inputs u1, . . . , uN and outputs t1, . . . , tN in
sequence. In such a case, for any u1, . . . , ui and t1, . . . , ti,
there is a 1-fold measurement strategy on Q given by{{(

F t1···tiu1···ui

)−1/2
F
t1···ti+1
u1···ui+1

(
F t1···tiu1···ui

)−1/2
}
ti+1

}
ui+1

,

which defines the behavior of the player on the i + 1st
round conditioned on the inputs sequence u1, . . . , ui and
output sequence t1, . . . , ti for the first i rounds. We call
these the conditional measurement strategies induced by
{{F t

u}t}u.
An r-player nonlocal game H consists of the following

data: (1) input alphabets I1 . . . , Ir and output alphabets
O1, . . . ,Or (all finite sets), (2) a probability distribution
p on I := ×iIi, and (3) a scoring function L : I × O1 ×
. . .×On → R. For such a game, HN denotes the N -fold
direct product of H (i.e., the game the game played N
times in parallel, with independently chosen inputs, and
where the score is the sum of scores achieved on each of
the N copies of the game).

A measurement strategy for H on a register Q is a
measurement strategy of the form {{F oi }o∈O}i∈I . Such
a strategy is n-partite Q = Q1 ⊗ · · · ⊗Qn and

F oi = F o11,i1
⊗ · · · ⊗ F onn,in (3)

where {{F okk,ik}ok∈Ok
}ik∈Ik are measurement strategies

on Qk for k = 1, 2, . . . , n. A sequential measurement
strategy for the game HN is an n-partite sequential mea-
surement strategy if all of its conditional strategies are
n-partite. (This class of strategies models the behavior
of players who must play the different rounds of the game
in sequence, and who can communicate in between but
not during rounds.)

If F is a strategy on a register Q, and φ is a state of
Q, then we refer to the pair (F, φ) simply as a (quan-
tum) strategy for Q. Let ω(H) denote the supremum
of all possible scores that can be achieved by quantum
strategies.

Proposition I.1 Let H be an n-player nonlocal game
whose scoring function has range [−C,C], and let (F, φ)
be an n-partite sequential measurement strategy for HN .
Then, the probability that the score achieved by (F, φ)
exceeds (ω(H) + δ)N is no more than

e−Nδ
2/8C2

. (4)

Proof. For each i = 1, 2, . . . , N , let Wi denote the score
achieved on the ith round, and let

W i = Wi − E[Wi |Wi−1 · · ·W1]. (5)

Each variable W i has range contained in [−2C, 2C],
and its expectation conditioned on W 1, . . . ,Wn is zero.
By Azuma’s inequality, the probability that the event∑N
i=1W i > δN occurs is no more than (4). The dif-

ference between
∑N
i=1W i and

∑N
i=1Wi is equal to the

sum over i ∈ 1, 2, . . . , N of the expectations E[Wi |
Wi−1 · · ·W1], each of which cannot exceed ω(H), and
thus the desired result follows. �

For convenience, we also make the following definition.
A Bell game is a game G for which we make the following
assumptions:

1. The input alphabets and output alphabets are all
equal to {0, 1, 2, . . . , n− 1} for some n. (We call n
the “alphabet size.”)

2. The input distribution is uniform.

3. The range of the scoring function is [−1, 1].

4. The optimal classical score is 0.

Note that any Bell inequality can be put into this form
(by an appropriate affine transformation of the scoring
function).

II. THE MIRROR ADVERSARY.

If α is a quantum-classical state of a register QC, then
the pretty good measurement induced by α on Q is the
C-valued measurement given by

{(αQ)−1/2αQc (αQ)−1/2}c∈C . (7)

This is a common construction. In the cryptographic
context it can be thought of as a “pretty good” attempt
by an adversary to use to Q to guess C.

The mirror adversary technique begins with the obser-
vation that if the stateQC was obtain by a C-valued mea-
surement on a bipartite pure state QQ′, then the pretty
good measurement is essentially the adversary using pre-
cisely the same measurement in order to reconstruct C.
This expressed by the following proposition.
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Parameters:

- A 2-player Bell game G with alphabet size n = 2t.

- A real number δ > 0 (the degree of Bell violation).

- Positive integers N (the number of rounds), and K
(the output size).

1. A pure tripartite state ABE is prepared by Eve, and
with A possessed by Alice, B possessed by Bob, and
E possessed by Eve.

2. The referee generates uniformly random numbers
x1, y1 ∈ {1, 2, . . . , n}, gives them as input to Alice
and Bob, respectively, who return outputs s1, t1.
This is repeated (N − 1) times to obtain input
sequences x1, . . . , xN , y1, . . . , yN and output se-
quences s1, . . . , sN , t1, . . . , tN .

3. The referee checks whether the average score ex-
ceeds δ. If not, the protocol is aborted.

4. The referee chooses a random affine automorphisma

Ψ: F2Nt → F2Nt and computes

V := G ◦Ψ ◦ F (s), (6)

where F : (Z/2tZ)N → F2Nt is a fixed bijection, and
G : F2Nt → FK

2 is a fixed surjective F2-linear map
(both chosen in advance).

a That is, a map F2Nt → F2Nt of the form X 7→ eX + f ,
where e 6= 0.

FIG. 1. The random number generation protocol.

Proposition II.1 Let Q,Q′ be registers with a fixed iso-
morphism Q ∼= Q′. Let ψ be a pure state of QQ′ which
symmetric under the interchange of Q and Q′, and let
α be the state of registers QC that arises from ψ by per-
forming a measurement {Rc}c∈C on Q′. Then, the pretty
good measurement induced by α on Q is isomorphic to
{Rc}.

Proof. Let ρ = ψQ. The state α is given by

α =
∑
c

|c〉 〈c| ⊗ √ρRc
√
ρ. (8)

And thus the pretty good measurement induced by α on
Q is isomorphic to {ρ−1/2√ρRc

√
ρρ−1/2} = {Rc}. �

The pretty good measurement has the advantage that
it is easy to compute, whereas finding the optimal mea-
surement for guessing C from Q might be difficult. More-
over, as we will see further on in the proof, the pretty
good measurement inherits the properties of the measure-
ment was used to construct C, including the sequential
measurement property discussed in the previous section.

The next proposition, which is a modification of a re-
sult from [16], is an expression of the fact that the pretty
good measurement is almost optimal. It asserts that if
the pretty good measurement is not much better than
random at guessing C from Q, then C is nearly uni-
form with respect to Q. We state a version of the result
that is more useful in the device-independent context, in

that it includes an additional bit register which records
whether a device-independent protocol has “aborted” or
“succeeded.”

Let Z denote a classical register with two basic states,
abort and succ.

Proposition II.2 Let α be a state of a tripartite register
QCZ which is classical on CZ. Let {Rz} and {Rcz}
denote the pretty good measurements on Q:

Rcz = (αQ)−1/2αQcz(α
Q)1/2, (9)

Rz = (αQ)−1/2αQz (αQ)1/2. (10)

Let f = Tr[αQsuccRsucc] and

f ′ =
∑
c

Tr[αQc,succRc,succ]. (11)

Then, ∥∥αQCsucc − αQsucc ⊗ UC∥∥1
≤
√
f ′ |C| − f, (12)

where UC denotes the completely mixed state on C.

Note that the quantity f is the probability of the event
that both Z = succ and that an adversary who uses
the pretty good measurement will guess that Z = succ.
The quantity f ′ is the probability of the event that both
Z = succ and that an adversary who uses the pretty good
measurement will guess Z = succ and correctly guess the
value of the register C. If f ′ = f/ |C| (that is, if the
adversary’s guess using the pretty good measurement is
no better than random) then the term on the right side
of (12) is equal to zero.

Proof. We follow the proof of Lemma 4 in [16]. Let
X = αQ and Y = αQCsucc. Note that Tr(X) = 1, and
therefore

∥∥X1/d
∥∥
d

= 1 for any d. By Holder’s inequality,
we have the following.∥∥Y − Y V ⊗ IV ∥∥1

≤
∥∥∥X1/4 ⊗ IC

∥∥∥
4

∥∥∥X−1/4(Y − Y Q ⊗ UC)X−1/4
∥∥∥

2

·
∥∥∥X1/4 ⊗ IC

∥∥∥
4

= |C|1/4 · Tr

[(
X−1/4(Y − Y Q ⊗ UC)X−1/4

)2
]1/2

|C|1/4

= |C|1/2
{

Tr

[(
X−1/4Y X−1/4

)2
]

−2Tr
[
X−1/2Y X−1/2(Y Q ⊗ UC)X−1/4

]
+Tr

[(
X−1/4(Y Q ⊗ UC)X−1/4

)2
]}1/2

= |C|1/2
{

Tr

[(
X−1/4Y X−1/4

)2
]

− 1

|C|
Tr

[(
X−1/4(Y Q)X−1/4

)2
]}1/2

,

where we have used the fact that Tr[(Y Q ⊗ UC)Z] =
1
|C|Tr[Y QZQ] for any Hermitian operator Z on QC. By

substitution we obtain the desired result. �
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Let G be a Bell game and (ρ,M,N) a strategy for G.

1. For i = 1, 2, . . . , n, Alice applies the measurement
{Ms

i } to A and records the result in a classical reg-
ister Si.

2. Referee gives Alice and Bob randomly chosen inputs
x ∈ X and y ∈ Y, respectively.

3. Alice returns the register Sx. Bob measures B with
{N t

y}t and reports the result.

FIG. 2. A process in which Alice is forced to behave classi-
cally.

III. GUESSING GAMES.

The following is roughly the same as the “immuniza-
tion” construction in [17]. Let G = ((X ,Y), (S, T ), p, L)
be a 2-player Bell game with alphabet size n, and let
C > 0. Then we define a new 3-player game GC as fol-
lows:

1. The input alphabets for the three players are X ,Y
and X ×Y, respectively, and the output alphabets
are S, T and S, respectively.

2. The probability distribution is uniform on triples
of the form (x, y, (x, y)), with x ∈ X , y ∈ Y.

3. The score assigned to an input triple (x, y, (x, y))
and output triple (s, t, s′) is L(x, y, s, t) if s = s′,
and is (−C) otherwise.

Proposition III.1 For any Bell game G with alphabet
size n,

ω(GC) ≤ 4
√
n/C. (13)

Our proof is similar to [17]. We will use the process
described in Figure 2.

Proof. Let Y = (Γ,M,N,P) be a quantum strategy
for GC on a space A⊗B⊗E. Let ρ = ΓAB , and for any
x ∈ X , s ∈ S, let ρsx denote the subnormalized state of
AB induced by the measurement P sxy on E.

Note that for any x, y, the probability that Alice’s and
Eve’s outputs will disagree when the input is (x, y, (x, y))
is given by

δx :=
∑
s

Tr(Ms
xρ
s
x). (14)

Note that if
∑
x δx > 1/C, then (since a score of −C is

awarded when Eve fails to guess Alice’s output) the score
achieved by Y obviously cannot exceed 0. So, we will
assume for the remainder of the proof that

∑
x δx ≤ 1/C.

By Proposition A.1, we have∥∥∥∥∥∑
s

Ms
xρM

s
x − ρ

∥∥∥∥∥
1

≤ δx (15)

for any x, y. Therefore if we let Wx denote the CPTP
operator on A given by X 7→

∑
sM

s
xρM

s
x, we obtain the

following distance inequalities for the states obtained by
applying the maps Wx sequentially:

‖WiWi−1 · · ·W1(ρ)− ρ‖1 (16)

≤
i∑

j=1

‖WiWi−1 · · ·Wj(ρ)−Wi−1Wi−2 · · ·Wj+1(ρ)‖1

≤
i∑

j=1

‖Wj(ρ)− ρ‖1 ≤
i∑

j=1

4
√
δj . (17)

(We have used the fact that ‖·‖1 is non-increasing under
CPTP maps in (17).)

Observe that in the process in Figure 2, the state that
Alice and Bob measure at step 3 is separable, and so their
expected score cannot exceed 0. On the other hand, by
(17), the state of the register AB is never more than trace

distance
∑i
j=1 4

√
δj from the original state ρ, and so the

expected score achieved in Figure 2 also cannot be less
than ω(G, Y )−

∑n
j=1 4

√
δj . Thus we have

ω(G, Y ) ≤
n∑
j=1

4
√
δj (18)

(19)

which implies

ω(G, Y ) ≤ 4
√
n

√√√√ n∑
j=1

δj . (20)

(21)

Since we have assumed
∑
x δx ≤ 1/C, this yields the

desired result. �

IV. SECURITY PROOF.

We will now prove the security of the protocol in Fig-
ure 1 by considering the “mirrored” version of the proto-
col shown in Figure 3.

Proposition IV.1 For the process in Figure 3, let succ
and succ′ denote the events that the referee and the ad-
versary consider the protocol to have succeeded (respec-
tively). Then,

P((S = S′ ∧ succ ∧ succ′) ≤ e−Ω(Nδ5/n).

Proof. For any C > 0, if the three events on the left
side of (23) all occur, then Alice and Bob have achieved
an average score of at least δ at the game GNC using a
sequential strategy. The probability of such a score is no
more than

exp(−N(δ − 4
√
n/C)2/8C2) (22)

Setting C = 64n/δ2 yields the desired result.
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Parameters:

- A 2-player Bell game G with alphabet size n = 2t.

- A real constant δ > 0 and positive integers N,K.

- A pure bipartite state Σ of registers AB.

1. Registers ABA′B′ are prepared in a symmetric pure
state so that the state of AB is in state Σ.

2. The referee prepares n-valued registers
X1, . . . , XN , X

′
1, . . . , X

′
NY1, . . . , YN , Y

′
1 , . . . , Y

′
N ,

and FNt
2 × (FNt

2 r {0})-valued registers Ψ,Ψ′, so
that for each register Z the corresponding primed
register Z′ is in a maximally entangled state with
Z. The referee gives all primed registers to the
adversary.

3. The referee measures the registers X,Y in the stan-
dard bases to obtain x1, . . . , xN and y1, . . . , yN ,
which are given sequentially to Alice and Bob who
return outputs s1, . . . , sN , t1, . . . , tN .

4. The referee checks whether the average score ex-
ceeds δ. If not, the referee considers the protocol
aborted. If so, the referee computes a register V
from S via Ψ (as in step 4 in Figure 1).

5. The adversary carries out step 3 herself, using the
registers A′, B′,X′,Y′ and the same measurements
used by Alice and Bob, to obtain outputs S′,T′. If
the average score at G is less than δ, the adversary
considers the protocol aborted. If not, she measures
Ψ′, and then computes V ′ from Ψ′ and S′ as in the
previous step.

FIG. 3. The mirrored random number generation protocol.

Proposition IV.2 The registers V,V′ at the conclusion
of the process in Figure 3 satisfy

P((V = V′ ∧ succ ∧ succ′)
≤ e−Ω(Nδ5/n) + 2−KP(succ ∧ succ′).

Proof. Note that for any distinct r1, r2 ∈ (Z/2tZ)N ,
the probability that the random homomorphism in equa-
tion (6) from Figure 1 will map r1, r2 to the same element
is exactly 1/

∣∣FK2 ∣∣ = 2−K . Thus we have the following:

P((ΨS = ΨS′) ∧ succ ∧ succ′)
= P((S = S′) ∧ succ ∧ succ′)

+P(ΨS = ΨS′ | (S 6= S′) ∧ succ ∧ succ′))
·P((S 6= S′) ∧ succ ∧ succ′)

≤ e−Ω(Nδ5/n) + 2−K ·P(succ ∧ succ′),

as desired. �
By Proposition II.1, the register V ′ in Figure 3 is pre-

cisely the result of the adversary using a pretty good
measurement in Figure 1 to recover in order to guess V .
By applying Proposition II.2, we have the following.

Theorem IV.3 Let ρ denote the state final state of the
registers in Figure 1. Then,∥∥ρVXYΨE

succ − UV ⊗ ρXYΨE
succ

∥∥
1
≤ 2K−Ω(Nδ5/n). �

Whitespace.
Note that if we fix δ, n and let K = bcNc for some suf-

ficiently small c > 0, the exponential on the right of (23)
vanishes exponentially. Thus universally composable pri-
vate random number generation (with a linear rate and
negligible error term) is achieved.

Appendix A: Supplementary Proofs

We reprove an additional result used by other au-
thors [17, 20]. The following proposition asserts that if
a quantum-classical state of a register QC is such that
C can be accurately guessed from a measurement on Q,
then that same measurement does not disturb the state
by much.

Proposition A.1 Let QC be a classical quantum regis-
ter in state α, and let {P c}c be a projective measurement
on Q whose outcome agrees with C with probability 1−δ.
Then, ∥∥∥∥∥∑

c∈C
P cαP c − α

∥∥∥∥∥
1

≤ 4
√
δ. (A1)

Proof. Our proof is similar to that of [20], Lemma I.4.
First suppose that α is concentrated on a single basic
state of C, i.e., Pα(C = z) = 1 for some z. Then,

Tr((P z)α) = 1− δ,

and therefore

‖P zαP z − α‖1
=
∥∥(P z)⊥αP z + (P z)α(P z)⊥ + (P z)α(P z)⊥

∥∥
1

≤
∥∥(P z)⊥αP z ‖1+‖ (P z)α(P z)⊥

∥∥
1

+
∥∥(P z)⊥α(P z)⊥

∥∥
1

= 2
∥∥(P z)⊥αP z

∥∥
1

+ δ

≤ 2
∥∥(P z)⊥

√
α
∥∥

2

∥∥√αP z∥∥
2

+ δ

≤ 2
√
‖(P z)⊥α(P z)⊥‖1

√
‖P zαP z‖1 + δ

= 2
√

(1− δ)δ + δ

≤ 3
√
δ.

And, ‖P zαP z −
∑
c P

cαP c‖
1
≤ δ ≤

√
δ which yields the

desired result.
To general case now follows, since any state of CQ is

is a convex combination of states that are concentrated
on a single value of C, the function ‖·‖1 is convex, and
the square root function is concave. �
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